"tin Coatings for Wear Resistance and Gold-like Decorative Coatings"

نویسنده

  • P. Chang
چکیده

Titanium Nitride (TiN) coatings have led the way for providing increased wear resistance and extended life of cutting tools, whether carbide inserts or high-speed steel. Where the earliest applications were for high temperature substrate materials (carbides) and chemical vapor deposition (CVD) was the process of choice, later developments in the physical vapor deposition (PVD) technology, especially in sputtering and cathodic arc deposition, made it possible to achieve similar improvements in performance for high speed steels and other heat sensitive metal substrates. Whereas the CVD process requires temperatures of about 1000°C to apply TiN, the PVD processes can apply the coating at temperatures of 5OO0C down to only 200°C, depending on the process chosen, and the application. As the deposition temperatures have decreased and the deposition rates have increased, the possible applications for TiN (and other hard coating materials) have expanded greatly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

COMPARISON OF THE CrN , TiN AND (Ti, Cr)N PVD COATINGS DEPOSITED BY CATHODIC ARC EVAPORATION

In the present study, CrN, TiN and (Ti, Cr)N coatings were deposited on D6 tool steel substrates. Physical and mechanical properties of coatings such as microstructure, thickness, phase composition, and hardness were evaluated. Phase compositions were studies by X-ray diffraction method. Mechanical properties were determined by nano-indentation technique. The friction and wear behaviour of the ...

متن کامل

A Review on Titanium Nitride and Titanium Carbide Single and Multilayer Coatings Deposited by Plasma Assisted Chemical Vapor Deposition

In this paper, we reviewed researches about the titanium nitride (TiN) and titanium carbide (TiC) single and multilayer coatings. These coatings were deposited by the plasma assisted chemical vapor deposition (PACVD) technique. Plasma-based technologies are used for the processing of thin films and coatings for different applications such as automobile and aerospace parts, computer disc drives,...

متن کامل

Evaluation of Tool Performance With Nanocrystalline Multilayer Coatings on the Machinability of Superalloy Inconel 718

In this paper, the performance of the cutting tool with nanocrystalline multilayer coatings (TiN+TiAlN) for machining of superalloy Inconel 718 in the dry and wet conditions was studied. The multi layer TiN and TiAlN with nanocrystalline structure was applied by physical vapor deposition technique (arc evaporation) on the WC-Co inserts. The results of the ball on disc wear test and the machinin...

متن کامل

Microstructures and Properties of Plasma Sprayed Ni Based Coatings Reinforced by TiN/C1-xNxTi Generated from In-Situ Solid-Gas Reaction

The strengthening hard phases TiN/C1-xNxTi were generated by in-situ solid-gas reaction in Ni-based composite coatings prepared using a plasma spray welding process to reinforce the wear resistance of the coatings. The microstructures and properties of the coatings were investigated. The results showed that the coatings mainly consisted of phases such as TiN, C1-xNxTi, TiC, etc. A small amount ...

متن کامل

Low Friction CrNMPP/TiNDCMS Multilayer Coatings

Transition metal nitrides like CrN and TiN are widely used in automotive applications due to their high hardness and wear resistance. Recently, we showed that a multilayer architecture of CrN and TiN, deposited using the hybrid-high power impulse magnetron sputtering (HIPIMS) and direct current magnetron sputtering (DCMS)-HIPIMS/DCMS deposition technique, results in coatings which indicate not ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003